Страница 3 из 1812345...10...Последняя »

Расплывчатые частицы: принцип неопределенности Гейзенберга

Главная особенность квантовой механики заключена в ее веро­ятностной природе, сформулированной Максом Борном в 1926 году. Вместо того чтобы говорить о точных значениях физических вели­чин, есть возможность описать только распределение вероятности этих значений. Связано это с Принципом неопределенности, Опу­бликованным Гейзенбергом в 1927 году.

Читать далее

Механика атомов

Новая теория для механики атомных явлений была названа квантовой механикой. Первый шаг к ее открытию сделал немецкий физик Вернер Гейзенберг. Немного позже была разработана кван­товая электродинамика для описания электромагнитных явлений в мире атомов. Эти новые теории связаны со старой, так называе­мой классической физикой таким образом, что если двигаться от масштаба атомов к обычным размерам, то в пределе получаются результаты классической физики. Читать далее

Модель Бора и спектроскопические законы Кирхгофа

Модель атома Бора прекрасно объясняет эксперимен­тальные законы спектроскопии, открытые Кирхгофом. В тонком слое горячего газа атомы сталкиваются друг с дру­гом, забрасывая электроны на высокие орбиты. Вскоре они спрыгивают на орбиты нижних уровней. В результате атом излучает’ фотоны, энергия которых соответствует разности энергий орбит.

Читать далее

Атом Бора

Датский физик Нильс Бор применил новую квантовую концеп­цию к атому. Бор родился в Копенгагене, в богатой семье. В юности он был известным футболистом: вместе с братом играл в лучших национальных командах. Бор учился в Копенгагенском универси­тете и защитил диссертацию в 1911 году. Поворотной точкой в его карьере стала работа в Англии после защиты диссертации. Вначале Бор поехал в Кембридж, но после знакомства с Резерфордом решил переехать в Манчестер. Читать далее

Единство волн и частиц

Проникнув в тайны строения вещества, мы вновь можем вер­нуться к свету. Как нам уже известно, в XIX веке волновая теория восторжествовала над более ранней теорией Ньютона о частицах света — корпускулах. Но для волны нужна среда, в которой может распространяться волна. Для звуковых волн нужен воздух, а в кос­мосе нет ни звуковых волн, ни воздуха. Предполагалось, что средой для световых волн служит эфир, заполняющий космос, но эта идея лишь усложняла проблему. Читать далее

Гравитационные волны

Одним из явлений, связанных с эластичностью пространства, являются гравитационные волны — небольшие изменения кривиз­ны пространства, распространяющиеся со скоростью света. Хотя американский физик Джозеф Вебер (1919-2000) еще в 1967 году утверждал, что открыл гравитационные волны, в действительности до сих пор нет прямого подтверждения их обнаружения.

Читать далее

Странные свойства черных дыр

В нашем мире, как описывает его общая теория относительно­сти, есть много странного; одно из самых удивительных — черная дыра. Если тело сжимается все сильнее и сильнее, то гравитация на его поверхности усиливается. Давайте для примера рассмотрим Землю.

Читать далее

Следствия общей теории относительности

Зная геометрию пространства, можно вычислить орбиту тела, на которое не действует ничто кроме гравитации. Теперь мы не считаем гравитацию силой, а говорим о свободном движении. В плоском пространстве такое движение происходит по прямой линии, но в искривленном пространстве свободное движение мо­жет происходить практически по замкнутой орбите. Возьмем об­ращающуюся вокруг Солнца планету. Она движется вперед по пря­мой, то есть по кратчайшему пути, но так как Солнце искривило пространство, орбита планеты становится эллипсом.

Читать далее

Значение кривизны пространства

Математик Вильям Клиффорд (1845-1879) переводил труды Римана на английский язык и в процессе этой работы был очарован идеями Римана о связи между физическими явлениями и геоме­трией. Он стал развивать эти идеи. Читая лекцию в Кембриджском философском обществе, посвященную «науке о пространстве», он обсуждал нашу возможность судить о геометрии пространства на астрономических масштабах и на масштабах столь малых, что они недоступны для наблюдения (то есть в мире элементарных частиц).

Читать далее

Свойства неевклидовых геометрий

Вселенная конечна или бесконечна? Это не такто просто «уви­деть». Евклидова геометрия прекрасно описывает наши обычные измерения. Но в будничной геометрии трудно встретиться с бес­конечностью. С другой стороны, испытываешь немалые трудности, пытаясь представить себе конечный мир со сферической геометри­ей, хотя его конечность легко описывается математически.

Читать далее

Страница 3 из 1812345...10...Последняя »