Список Видео

Единство волн и частиц

Проникнув в тайны строения вещества, мы вновь можем вер­нуться к свету. Как нам уже известно, в XIX веке волновая теория восторжествовала над более ранней теорией Ньютона о частицах света — корпускулах. Но для волны нужна среда, в которой может распространяться волна. Для звуковых волн нужен воздух, а в кос­мосе нет ни звуковых волн, ни воздуха. Предполагалось, что средой для световых волн служит эфир, заполняющий космос, но эта идея лишь усложняла проблему. Важнейшим шагом вперед стала первая статья Эйнштейна, вышедшая в 1905 году, в которой он показал, что в некоторых ситуациях свет ведет себя странно: его поведение напо­минает поведение частиц, которые сейчас называют Фотонами.

Единство волн и частиц

Теория Максвелла рассматривает свет как электромагнитные ко­лебания. Но при использовании этой теории для объяснения спек­тра излучения абсолютно черного тела возникли проблемы. Было известно, что излучение черного тела обладает наибольшей силой на определенной длине волны и ослабевает по обе стороны от этого максимума в спектре. Но классическая теория не могла объяснить уменьшение интенсивности на высоких частотах. Немецкий физик Макс Планк понял, как можно объяснить наблюдаемый спектр чер­ного тела: нужно предположить, что атом может излучать энергию только порциями определенного размера. Связанная с излучением энергия похожа на частицы: излучиться может одна, две, три и т. д. «частицы», но доля «частицы» излучиться не может.

Минимальная порция энергии, по предположению Планка, пропорциональна частоте волны: чем выше частота, тем больше энергии в каждой порции. Коэффициент пропорциональности на­зывают Постоянной Планка. Таким образом,

Энергия = Постоянная Планка х частота.

Поскольку частота и длина волны обратно пропорциональны друг другу, порция энергии обратно пропорциональна длине вол­

Ны. Постоянная Планка очень мала, поэтому в быту мы не замечаем отдельных порций света, как не замечаем, что на вид сплошное ве­щество состоит из крошечных атомов.

Макс План к был родом из Киля, но большую часть своих иссле­дований провел в Мюнхене, где и защитил диссертацию (17.1). До этого Планк слушал лекции Кирхгофа и Гельмгольца в Берлине. Довольно неохшданно его избрали преемником Кирхгофа в Берлине. Планк исследовал излучение черного тела, и в 1900 году это привело его к важнейшему открытию. Похоже, Планк не очень высоко оцени­вал значение своего открытия, что энергия может излучаться только определенными порциями, называемыми Квантами. Он считал, что это свойство атомов, и думал, что нет причин, мешающих электро­магнитной волне переносить любое количество энергии.

Единство волн и частиц

Следующий шаг сделал Эйнштейн, который показал, что кван­тование энергии в порции связано не только с колебаниями в ато­ме, но и с самим электромагнитным излучением. Доказательством существования квантов света (фотонов) стало объяснение, которое Эйнштейн дал фотоэлектрическому эффекту — испусканию метал­лом электронов под действием падающего на него света.

Это явле­ние в 1880х годах неожиданно открыл Генрих Герц во время экс­периментов с радиоволнами. Ультрафиолетовые фотоны с высокой энергией могут выбивать электроны из металла, даже если свет имеет очень малую интенсивность. Даже один высокоэнергичный квант высокочастотного излучения способен совершить работу по «выдергиванию» электрона из металла. Но отдельные низкоэнер­гетичные кванты красного или инфракрасного низкочастотного излучения (даже если таких квантов много при ярком освещении) не могут выбить электрон. Грубый аналог этого явления — бросок в лицо пригоршни песка или тяжелого камня; ясно, что последствия этих ударов будут разными.

>Единство волн и частиц

Свет состоит из своего рода частиц, как полагал Ньютон, но нельзя игнорировать и признаки волновой природы света. Наш повседневный опыт затрудняет понимание этой двойственной, «корпускулярноволновой» природы света и вообще электромаг­нитного излучения. Мы по привычке связываем волны и частицы с совершенно разными явлениями. Но почемуто в масштабе атомов оба этих понятия ассоциируются с одними и теми же явлениями. Бесполезно пытаться представить себе нечто, одновременно являю­щееся и волной, и частицей.

Еще больше усложнил ситуацию французский герцог и физик Луи де Бройль (18921987), который в 1924 году предположил, что электрон является не только частицей, но и волной. В 1922 году он защитил диссертацию под названием «Исследования в области квантовой теории». В ней была изложена его теория электронных волн. Вскоре это подтвердилось экспериментально: электроны во многих случаях ведут себя как световые волны. Например, уже опи­санная выше интерференция, когда волны в одной и той же фазе ко­лебаний усиливают друг друга, а в противофазе — гасят, проявилась в экспериментах с использованием пучков электронов, падающих на кристаллы. Волны де Бройля регулярно используются в электрон­ных микроскопах для получения более резкого изображения, чем в оптике, поскольку длина волны у электронов короче, чем у света.

  • Похожие статьи из категории: Странности микромира
  • Здравый смысл и реальность

    Квантовая физика оказалась очень точной в объяснении свойств материи, и в этом смысле она «правильная». Однако концептуальные основы квантовой теории все еще обсуждаются и изучаются. Явления микромира настолько отличаются от […]

  • Структура атомов

    Развитие квантовой теории позволило понять структуру атома: почему атомы каждого элемента обладают характерными химиче­скими свойствами, как атомы объединяются в химические соедине­ния и многое другое. Вычисления в квантовой механике основаны на […]

  • Расплывчатые частицы: принцип неопределенности Гейзенберга

    Главная особенность квантовой механики заключена в ее веро­ятностной природе, сформулированной Максом Борном в 1926 году. Вместо того чтобы говорить о точных значениях физических вели­чин, есть возможность описать только распределение вероятности […]

  • Механика атомов

    Новая теория для механики атомных явлений была названа квантовой механикой. Первый шаг к ее открытию сделал немецкий физик Вернер Гейзенберг. Немного позже была разработана кван­товая электродинамика для описания электромагнитных явлений […]

  • Модель Бора и спектроскопические законы Кирхгофа

    Модель атома Бора прекрасно объясняет эксперимен­тальные законы спектроскопии, открытые Кирхгофом. В тонком слое горячего газа атомы сталкиваются друг с дру­гом, забрасывая электроны на высокие орбиты. Вскоре они спрыгивают на орбиты […]