Другие методы поиска
Для каждой планеты явление гравитационного линзирования уникально. Вероятность того, что его можно будет наблюдать еще раз, очень мала. Если орбитальная плоскость обнаруженной планеты ориентирована к нам ребром, то в принципе ее можно исследовать и в будущем, используя затмение. Этим методом можно находить далекие планеты, и это может быть лучшим способом обнаружить планеты земного размера.
А почему мы просто не смотрим на звезду в телескоп и не ищем рядом с ней планеты? Этот Метод прямого изображения Кажется простым, но на самом деле его очень трудно использовать изза огромной разницы в яркости звезды и планеты. Для далекого наблюдателя наше Солнце ярче Юпитера примерно в миллиард раз. Чтобы снизить эффект ослепляющего света звезды, были разработаны изящные методы. Один из уже доказавших свою эффективность — вынос телескопа на орбиту, выше воздушного слоя, размывающего изображение. Способность космического телескопа разрешать малые углы ограничена в основном дифракцией световых волн. У космического телескопа «Хаббл» этот так называемый предел Рэлея для видимого света составляет 0,055". При таком разрешении, в принципе, можно увидеть раздельно Юпитер и Солнце с расстояния 95 пк (310 световых лет).
Но на практике яркий свет звезды создает серьезные проблемы, поскольку он превосходит яркость планеты в 1 ооо ооо раз даже в первом дифракционном минимуме — наиболее выгодном положении планеты для ее обнаружения. В этом случае, чтобы зарегистрировать изображение планеты, потребовалась бы неделя драгоценного наблюдательного времени телескопа «Хаббл». Если основываться только на разрешении телескопа «Хаббл», то планету на такой орбите, как у Земли, можно было бы обнаружить с расстояния 18 пк. Но близкие к звезде планеты надежно прячутся в ее блеске. Планеты, далекие от звезды, легче увидеть, особенно если они большие и хорошо отражают свет. В тех немногих случаях, когда планеты обнаруживались непосредственно по их изображению, они располагались довольно далеко от своей звезды.
Европейская южная обсерватория (Е80) представила в 2007 году новый прибор для охоты за планетами — интегральный полевой спектрограф, разработанный под руководством Нираяна Тхатте. Он получает быструю последовательность изображений на разных длинах волн. В таких изображениях различные возмущающие
Эффекты меняются с изменением длины волны, но звезда и планета должны оставаться на одном и том же месте независимо от длины волны. Этот прибор будет использован на Очень Большом Телескопе (УЬТ ЕЗО) в Чили. Сейчас УЬТ является самым передовым наземным телескопом: он имеет четыре 8,2м инструмента, которые можно использовать как раздельно, так и вместе.
До сих пор большинство экзопланет было обнаружено с помощью наземных телескопов (323) Позже открытие некоторых из них подтвердил космический телескоп «Хаббл». Но в будущем ситуация изменится. В 2006 году был запущен космический телескоп СОЯОТ, созданный Французским космическим агентством (СКЕЗ) совместно с Европейским космическим агентством (Е8А). Одной из его главных задач является поиск экзопланет методом покрытий — по уменьшению блеска звезды в момент прохождении перед ней планеты. Несколько новых планет он уже обнаружил.
С этой же целью в 2009 году запущен космический телескоп «Кеплер» (ЫА8А), который также нашел уже несколько новых планет. Планируется еще ряд космических обсерваторий для поиска экзопланет (например, Иеу Уог1с.8 Гша^ег, Папуш, 8расе 1пт. егГеготе1:гу м185юп, Теггез1па1 Р1апе1 Ртс1ег, РЕСАЗЕ).
И наконец, косвенным методом для обнаружения экзопланег могут стать наблюдения пылевых дисков вокруг молодых звезд. В таких дисках иногда заметны кольцевые области, свободные от вещества. Вероятно, это те области, где формирующиеся или новорожденные планеты вычищают окрестности своей орбиты.