http://galaktikaru.ru Звезды, Солнце, Астрномия Thu, 24 Mar 2016 21:47:17 +0000 ru-RU hourly 1 https://wordpress.org/?v=4.4.3 Теория концентрических сфер http://galaktikaru.ru/%d1%82%d0%b5%d0%be%d1%80%d0%b8%d1%8f-%d0%ba%d0%be%d0%bd%d1%86%d0%b5%d0%bd%d1%82%d1%80%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d1%85-%d1%81%d1%84%d0%b5%d1%80/ Thu, 27 Sep 2012 18:59:57 +0000 http://portal35.ru/?p=702 Теория концентрических сфер

Греческие философы начали использовать новый подход, выходящий за рамки астрологии: они пытались рационально объяснить видимое движение планет. Их идеалом небесных движений были сферы и круговые движения (и этот идеал продержался два тысячелетия). Сфера и окружность как геометрические фигуры были хорошо изучены греческими математиками.
теория концентрических сфер
Кроме того, при идеальном круговом движении точка всегда возвращается в исходное положение, а это, очевидно, подходит для небесных объектов, которые если и не божественные существа, то, по крайней мере, вечные; а небесная сфера, судя по наблюдениям, вращается совершенно равномерно.

Платон спрашивал своих учеников, какого типа простое движение может объяснить сложные движения планет

Платон спрашивал своих учеников, какого типа простое движение может объяснить сложные движения планет. Евдокс (около
408-355 До н. э.) принял вызов. Среди прочих достижений Евдокса был метод вывода формулы для вычисления площадей и объемов, похожий на современное интегральное исчисление.
Теория Евдокса о сферах, концентрических по отношению к Земле, стала первой математической моделью, объясняющей некоторые детали небесных движений, включая и сбивающие с толку попятные движения. В этой модели рассматривались сферы, вращающиеся вокруг своей оси с различными, но постоянными скоростями. Ось каждой внутренней сферы упиралась в следующую сферу, и все они были наклонены друг к другу под определенным углом. За пределом всех планетных сфер располагалась небесная сфера неподвижных звезд, вращающаяся равномерно вокруг Земли с периодом в одни сутки. Мы надеемся, что наше краткое объяснение не ошеломило читателя! Ряд взаимосвязанных сфер обеспечивал каждой планете ее собственное особое движение. Довольно равномерное движение Солнца и Луны можно смоделировать всего лишь тремя сферами для каждого из объектов.
Первая сфера вращается вокруг оси север-юг и дает суточное движение. Один полный поворот второй сферы, наклоненной к первой на угол наклона эклиптики к небесному экватору, обеспечивает сидерический период. Наконец, третья сфера моделирует вращение по орбите, наклоненной к эклиптике. В случае Луны и Солнца достаточно трех сфер (Евдокс ошибочно считал, что Солнце движется не точно по эклиптике). Планеты с обратными петлями — Меркурий, Венера, Марс, Юпитер и Сатурн — для объяснения их более сложного движения требуют наличия четырех сфер у каждой. Таким образом, полное количество сфер составляет (2 х 3) + (5 х 4) = 26, и все они концентрически вложены друг в друга.

С помощью своей модели Евдокс мог неплохо объяснить движения планет, известные в то время

С помощью своей модели Евдокс мог неплохо объяснить движения планет, известные в то время. Однако Марс оказался крепким орешком, и его движение было почти невозможно описать с помощью этой модели. Видимо, Евдокс рассматривал свою модель не как реальную физическую конструкцию, а как чисто математическое построение, где ряд сфер одной планеты никак не влияет на сферы другой, хотя все они вложены одна в другую.
Развитием модели Евдокса стала планетная модель Аристотеля, включавшая 56 сфер с Землею в центре. Возможно, Аристотель рассматривал сферы как физические объекты, типа небесного кристалла. Однако он отвергал идею Пифагора о музыке сфер. Наоборот, он рассматривал тишину небес как доказательство наличия сфер. Шума можно было бы ожидать, если бы небесные тела неслись сквозь какую-то среду. Число сфер возросло, поскольку Аристотель хотел соединить ряд сфер каждой планеты с дополнительными сферами, так чтобы основное суточное движение внешней сферы неподвижных звезд передавалось сверху вниз.

Теория эпициклов

Планетная модель Евдокса не смогла объяснить некоторые на-блюдательные данные, и это обнаружил Автолик из Питаны (около 360-290 до н. э.). Когда планеты делают петлю на западе, они ярче, чем в остальное время, что означает, что в этот момент они к нам ближе. В моделях, где центр сфер расположен на Земле, планеты всегда остаются на одном и том же расстоянии от Земли. Это несоответствие было устранено Аполлонием Пергским (около 265-176 до н. э.). Он работал в новом мировом научном центре — в Александрийском музее. Аполлоний был учеником Евклида и был известен своими исследованиями геометрических кривых — эллипса, гиперболы и параболы. Гораздо позже эти кривые сыграли важную роль в изучении планетных орбит. Аполлоний разработал новый, хотя и основанный на тех же идеальных окружностях, способ представления планетных движений.
В его модели планета не укреплена на своей сфере, а движется по маленькой окружности — эпициклу, центр которого закреплен на равномерно вращающейся главной сфере. Когда планета перемещается в обратном направлении по эпициклу, она находится в наиболее близком к нам положении, и этим объясняется ее поярчание при совершении обратной петли на небе . Движение по большому кругу — дифференту происходит с сидерическим периодом планеты, в то время как по эпициклу она вращается с синодическим периодом. Вращение в обоих случаях происходит с постоянной скоростью. Эпицикл объяснял изменение блеска каждой планеты и ее движение по небу, заменяя две сферы для обратного движения. Эта схема использовалась и совершенствовалась до конца Средневековья

]]>