http://galaktikaru.ru Звезды, Солнце, Астрномия Thu, 24 Mar 2016 21:47:17 +0000 ru-RU hourly 1 https://wordpress.org/?v=4.4.3 Силовые поля http://galaktikaru.ru/%d1%81%d0%b8%d0%bb%d0%be%d0%b2%d1%8b%d0%b5-%d0%bf%d0%be%d0%bb%d1%8f/ Fri, 21 Dec 2012 14:45:15 +0000 http://galaktikaru.ru/?p=902 Силовые поля

Одним из важнейших достижений Фарадея стала предложенная им новая интерпретация того, как сила передается от одного тела к другому. Вместо действия на расстоянии он представлял себе силовые линии, пронизывающие пространство. В 1830  и 1840-е годы Фарадей продолжал разрабатывать свою идею магнитных и электрических силовых линий. Но поскольку эта новая идея не имела математической формы, большинство ученых отвергло ее. Однако было два важных исключения — Уильям Томсон и Джеймс Клерк Максвелл.
Силовые поля
Томсон дал силовым линиям Фарадея математическую интерпретацию и показал, что концепция силовых линий согласуется с теорией тепла и механикой; тем самым был заложен математический фундамент теории поля. Фарадей осознавал важность поддержки этими «двумя очень талантливыми джентльменами и выдающимися математиками»; он говорил: «для меня это источник большого наслаждения и поддержки — чувствовать, что они подтверждают справедливость и универсальность предложенного мной представления».
Для Фарадея идея о силовых линиях естественно вытекала из его опытов с магнитами. Когда он бросал иглообразные железные опилки на лист бумаги, лежащий на куске магнита, то замечал, что опилки выстраиваются по линиям, идущим в определенном направлении, в зависимости от их положения относительно магнита.

магнитное поле

Он думал, что магнитные полюсы связаны магнитными линиями и что эти линии становятся видимыми с помощью железных опилок, которые выстраиваются параллельно линиям. Для Фарадея эти линии были реальными, хоть и невидимыми. Свою идею о силовых линиях Фарадей распространил и на электрические силы; он считал, что и гравитацию можно интерпретировать подобным способом. Вместо утверждения, что планета какимто неведомым образом узнает, как она должна двигаться по орбите вокруг Солнца, Фарадей ввел понятие гравитационного поля, которое управляет планетой на орбите. Солнце генерирует поле вокруг себя, а планеты и другие небесные тела ощущают влияние поля и ведут себя соответственно. Точно так же заряженные тела генерируют вокруг себя электрические поля, а другие заряженные тела чувствуют это поле и реагируют на него. Существуют и магнитные поля, связанные с магнитами.

Ньютон считал, что основные объекты — это частицы, связанные между собой силами; а пространство между ними пустое. Фарадей представил себе и частицы, и поля, взаимодействующие друг с другом; а это вполне современная точка зрения. Нельзя сказать, что частицы более реальны, чем поля. Обычно мы изображаем поля в виде линий, указывающих направление силы в каждой точке пространства .

Чем плотнее расположены линии, тем больше сила. Возьмем в качестве примера гравитацию Солнца. Можно сказать, что, приходя со всевозможных направлений, все силовые линии оканчиваются на Солнце. Мы можем нарисовать сферы разных радиусов с центром в Солнце, при этом каждая силовая линия будет пересекать каждую сферу. Площадь сфер возрастает как квадрат их радиуса, поэтому плотность линий уменьшается обратно пропорционально квадрату расстояний.

 

 

 

Таким образом, идея о силовых линиях прямо приводит нас к закону гравитации Ньютона (а также и к кулоновскому закону обратных квадратов для электрического поля постоянного заряда; Используя идею силового поля (например, гравитационного), нужно следовать нескольким простым правилам.
1. Гравитационное ускорение происходит вдоль силового поля, проходящего через тело.
2. Величина ускорения пропорциональна плотности линий в заданной точке.
3. Силовые линии могут заканчиваться только там, где есть масса. Число линий, заканчивающихся в данной точке, про-порционально массе этой точки.
Теперь легко доказать утверждение, над которым Ньютону пришлось немало потрудиться. Сравнивая ускорения на поверхности Земли и на орбите Луны, Ньютон предполагал, что Земля воздействует на все тела так, как будто бы вся ее масса сконцентрирована в ее центре. Почему?
Предположим для простоты, что Земля совершенно круглая и симметричная. Тогда все части ее поверхности будут одинаково покрыты приходящими силовыми линиями. Согласно третьем}’ правилу, число силовых линий зависит от массы Земли. Если бы вся масса была сосредоточена в центре планеты, все эти линии продолжались бы до центра. Таким образом, гравитационное поле Земли
не зависит от того, как масса распределена под ее поверхностью в том случае, если имеется сферическая симметрия. В частности, вся масса Земли, сконцентрированная в ее центре, создает точно такую же гравитацию, как реальная Земля.
Точно такие же рассуждения применимы и к электрическому полю. Но поскольку существует два вида электрического заряда положительный и отрицательный, — то при изменении знака заряда направление силовых линий меняется на противоположное. Силовые линии начинаются у положительного заряда и заканчиваются у отрицательного.

]]> Электричества и магнетизма http://galaktikaru.ru/%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%b8%d1%87%d0%b5%d1%81%d1%82%d0%b2%d0%b0-%d0%b8-%d0%bc%d0%b0%d0%b3%d0%bd%d0%b5%d1%82%d0%b8%d0%b7%d0%bc%d0%b0/ Wed, 19 Dec 2012 14:38:06 +0000 http://galaktikaru.ru/?p=897 Объединение электричества и магнетизма

Следующее большое открытие произошло почти случайно. Ханс Кристиан Эрстед (1777-1851), профессор физики Копенгагенского университета, готовился к лекции об электричестве и магнетизме; для этого он принес в аудиторию батарею, чтобы продемонстрировать действие электрического тока. Рядом с батареей он положил компас — для демонстрации магнитных сил. Прежде он уже заме-чал, что между электричеством и магнетизмом существует некоторая связь: например, стрелка компаса беснуется во время грозы.
 электричества и магнетизма
До начала лекции оставалось немного времени, и профессор решил провести небольшой опыт. Эрстед положил компас рядом с проводом, по которому тек электрический ток, и его подозрения подтвердились: под действием тока стрелка компаса начала двигаться. Таким образом, два отдельных феномена, электричество и магнетизм, которые до этого рассматривались совершенно раздельно, в действительности оказались связаны друг с другом. Эрстед продолжил свои исследования и опубликовал результаты в 1820 году.
Новость об открытии Эрстеда распространилась очень быстро. Через несколько лет его статья была зачитана на собрании Французской академии наук. На этом собрании был и Ампер, который тут же начал работать над объяснением явления, обнаруженного Эрстедом. Теория была готова через неделю и послужила основой для объединения электричества и магнетизма в теорию электромагнетизма.
Андре Мари Ампер (17751836) родился недалеко от Лиона. Его отец, состоятельный купец, занимавший должность мирового судьи в Лионе, был казнен во время Французской революции. Теперь дом Ампера превращен в музей и открыт для посещения. В детстве Ампер не ходил в школу, а приобрел свои знания путем чтения книг. Вот эпизод, говорящий о его прекрасной памяти и способностях к обучению. Будучи еще маленьким мальчиком, он отправился в Лионскую библиотеку и попросил книги знаменитых математиков — Эйлера и Бернулли. Библиотекарь объяснил мальчику, что это сложные математические книги, которые ему будет трудно понять, к тому же — они написаны на латинском языке. Новость о латинском языке смутила Ампера, но он решил, что незнание латинского языка не должно мешать ему. Спустя несколько недель он вернулся в библиотеку, уже зная латынь, и начал читать эти книги.
Ампер женился в 24 года и содержал семью, работая школьным учителем. В 1808 году он был назначен инспектором школ и на этой должности оставался всю жизнь. Кроме того, он работал профессором в Париже. К 1820 году, когда Ампер заинтересовался электромагнетизмом, он был уже широко известен своими трудами по математике и химии. Этот разносторонний ученый начинал как профессор математики, затем стал профессором философии, а позднее — профессором астрономии! Начиная с 1824 года Ампер был уже профессором физики Коллеж де Франс.

Ампер не удовлетворился только лишь объяснением результатов Эрстеда и начал свои исследования.

Например, он показал, что, смотав электрический провод в виток, можно создать искусственный магнит — электромагнит, который действует точно так же, как естественные магниты. Ампер смело, но совершенно верно предположил, что естественные магниты содержат внутри себя небольшие витки непрерывного тока, которые действуют вместе и создают естественный магнетизм.
Ампер сразу же понял важность феномена электромагнетизма в передаче информации. Включая и выключая ток, можно привести в движение стрелку компаса, находящегося довольно далеко. Послание может быть передано с такой скоростью, с какой распространяется электрический ток. Вскоре началось производство телеграфных аппаратов, работающих по этому принципу. Одна из первых телеграфных линий была протянута в 1834 году в Геттингене между лабораторией Вильгельма Вебера и астрономической обсерваторией Карла Фридриха Гаусса. В том же году первую коммерческую телеграфную линию, соединившую Вашингтон и Балтимор (США), наладил Сэмюэл Морзе, изобретатель азбуки Морзе.
Другим ученым, сразу же оценившим огромное значение открытия Эрстеда, стал англичанин Майкл Фарадей. Он был сыном кузнеца и получил минимальное образование. В13 лет он стал подмастерьем переплетчика. Переплетая книги, он их читал. Один из клиентов дал ему бесплатный абонемент на посещение публичных лекций Гемфри Дэви (17781829). Фарадей сделал аккуратный конспект лекций, красиво переплел его и послал Дэви с запиской, в которой спрашивал, нет ли у Дэви работы для него. Каково же было удивление Фарадея, когда Дэви пригласил его к себе. Конспект был написан очень аккуратно и произвел на Дэви хорошее впечатление. В 1820 году он предложил мальчику должность своего ассистента в Королевском институте в Лондоне. Так началась одна из наиболее знаменитых карьер в науке. Говорили, что самым большим открытием Дэви был Фарадей.

Фарадей
Фарадей учился у самого Дэви. Когда Дэви отправился в полуторагодичный тур на континент, он взял с собой Фарадея, который познакомился там, среди прочих, с Ампером и Вольтой. Когда Дэви работал в Париже с Луи ГейЛ юсе а ком, изучая новый химический элемент — йод, им помогал Фарадей. Впрочем, и дома в его служебные обязанности входило проведение химических опытов.
Если не считать временного интереса к электромагнетизму, вызванного открытием Эрстеда, Фарадей до 1830 года был профессиональным химиком. В 1833 году он стал профессором химии в Королевском институте. Но к этому моменту его научные интересы уже поменялись. Фарадей был убежден, что если электрический ток может быть причиной возникновения магнитных сил, то и магнит должен быть способен создавать электрический ток. Это мнение разделяли многие, среди которых был и Ампер, не сумевший, однако, подтвердить эту захватывающую идею.
В течение ю лет Фарадей проводил различные опыты по электромагнетизму. В 1831 году он вложил одну катушку внутрь другой. Когда по одной из катушек пускали ток, она становилась электромагнитом. Фарадей хотел выяснить, способен ли магнит вызвать появление электрического тока во второй катушке. Действительно, ток возникал, но лишь на мгновение — только при включении или выключении электромагнита. Это привело Фарадея к важному открытию: изменение магнита — например, изменение силы магнита или его вращение — генерирует электрический ток в соседней катушке. Ключевым моментом здесь было изменение магнита.
Это позволило Фарадею сконструировать электрический генератор — простое динамо, ставшее в будущем основой электротехники. Однажды он демонстрировал свое открытие Уильяму Гладстону, который в то время был министром финансов, и тот спросил: «Ну и как же это можно использовать?» Фарадей ответил: «Вполне возможно, сэр, что когда-нибудь вы сможете обложить это налогом».

]]> Природа электричества http://galaktikaru.ru/%d0%bf%d1%80%d0%b8%d1%80%d0%be%d0%b4%d0%b0-%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%b8%d1%87%d0%b5%d1%81%d1%82%d0%b2%d0%b0/ Mon, 17 Dec 2012 14:27:36 +0000 http://galaktikaru.ru/?p=892 Природа электричества

Гильберт рассматривал электричество как жидкость, которая возникает или переносится при трении, например, когда янтарь натирают мехом. Он назвал эту жидкость «электрика», по греческому названию янтаря (многие родственные слова, произошли от этого термина, например электрон). Он показал также, что Земля является огромным магнитом, и изучал ее свойства, используя миниатюрную модель из магнетита.
Природа электричества

Это помогло ему объяснить, почему стрелка компаса указывает направление северюг. Истинный магнитный полюс Земли расположен на широте 830, в Северной Канаде, и медленно смещается к северу примерно на 40 км в год. По определению, северным полюсом магнитной стрелки называют тот ее конец, который смотрит на север. Как мы знаем, Кеплер рассматривал роль магнетизма в движении планет; теперь очевидно, что он заблуждался.

Стефен Грей объявил в 1729 году, что электричество, полученное в результате трения, можно перемещать с места на место

Другой англичанин, Стефен Грей (1666-1736), объявил в 1729 году, что электричество, полученное в результате трения, можно перемещать с места на место. В зависимости от способности пропускать через себя электричество он разделил вещества на проводники (например, медь) и изоляторы (например, стекло). Француз Шарль Дюфе (1698-1739) слышал о работах Грея и начал собственное исследование. Он пришел к выводу, что существует два вида электричества — стеклянное и янтарное (или смоляное). Первый вид возникает, например, при трении стекла шелковой тканью, а второй — в янтаре, когда его трут мехом. Он сделал такое заключение, заметив, что тела, заряжающиеся схожим электричеством, отталкиваются друг от друга, в то время как тела с противоположным электричеством притягивают друг друга.
Открытие Дюфе можно было интерпретировать поразному: либо действительно существует два вида электрической жидкости, или же есть жидкость одного вида, но возможен ее избыток или дефицит, как предполагал, например, Бенджамин Франклин. Он считал стеклянное электричество реальным, положительным электричеством, а янтарное электричество представлял как нехватку, или отрицательное электричество. По его мнению, трение или любое другое действие и не создают, и не разрушают электричество, а всего лишь приводят к передаче электричества от одного тела к другому. Таким образом, он предчувствовал закон сохранения электрического заряда, один из краеугольных камней современной физики. Ту же идею еще раньше предлагал Уильям Уотсон (1715-1787).

Иизобретателем эффективной «печи Франклина», бифокальных очков и громоотвода

изобретатель «печи Франклина», бифокальных очков и громоотвода
Франклин был не только одним из «отцовоснователей» во время Американской революции, но и изобретателем эффективной «печи Франклина», бифокальных очков и громоотвода. Он начинал подмастерьем переплетчика, став затем торговцем книгами и издателем. Случайно, в Бостоне, Франклин посетил выставку чудес электричества и был так очарован, что следующие ю лет изучал электричество. Но еще он был вынужден заниматься дипломатической работой, помогая в создании Декларации независимости, Конституции США и служа американским послом в Париже.
Когда мы анализируем электрическое притяжение и отталкивание, совершенно естественно сравнить их с гравитацией Ньютона. Кроме того, что для электрической силы характерны два вида заряда, она является более сильной версией закона сил Ньютона, что облегчает исследования. Английский теолог и физик Джозеф Пристли (1733-1804) первый продемонстрировал, что закон силы между зарядами является законом обратных квадратов, как и закон гравитации Ньютона. Наиболее детальные исследования электрической силы провел Шарль Кулон (17361806) во Франции, поэтому закон действующей между электрическими зарядами силы назвали законом Кулона.
Электрическая батарея, созданная итальянским физиком Алессандро Вольта (17451827), открыла широкое поле для исследований, изменивших всю картину. Раньше сильные электрические токи генерировались только на мгновение во время электрического разряда. Теперь любая лаборатория могла быть оснащена мощной электрической батареей . Мощность электрического тока для исследований повысилась в ю ооо раз. Так были раскрыты новые секреты природы.Электрическая батарея

]]> Информации из спектра http://galaktikaru.ru/%d0%b8%d0%bd%d1%84%d0%be%d1%80%d0%bc%d0%b0%d1%86%d0%b8%d0%b8-%d0%b8%d0%b7-%d1%81%d0%bf%d0%b5%d0%ba%d1%82%d1%80%d0%b0/ Sat, 15 Dec 2012 14:20:40 +0000 http://galaktikaru.ru/?p=889 Больше информации из спектра

Наряду с данными о химическом составе, спектр звезды несет много другой информации, например, он сообщает о скорости движения звезды относительно наблюдателя. Ее измерение основывается на принципе, предложенном в 1842 году австрийским ученым Кристианом Доплером (18031853). Согласно закону Доплера, длина волны света меняется пропорционально скорости излучающего тела. Это явление хорошо известно для звуковых волн. Например, сирена машины «скорой помощи» слышна на высоких тонах (короткая длина волны), когда автомобиль приближается к нам, но тон сразу же становится ниже (длина волны возрастает), как только машина промчится мимо и начнет удаляться от нас .
Больше информации из спектра
Точно так же спектральные линии звездного света смещаются к голубому концу спектра, то есть их длина волны уменьшается, когда звезда приближав гея к нам. И наоборот, если звезда удаляется, ее спектральные линии смещаются к красному концу спектра. Относитель
Фактически Доплер считал, что можно определить скорость звезды по ее цвету. Но для типичных скоростей звезд изменения цвета настолько малы, что их невозможно заметить. Спустя несколько лет французский физик Ипполит Физо, не зная о работах Доплера, предположил, что можно использовать узкую спектральную линию в качестве индикатора небольшого изменения длин волн в спектре движущейся звезды.
Доля энергии в разных частях спектра не зависит от природы излучающего тела, неважно — это кусок железа или далекая звезда. Видимый цвет зависит только от температуры тела. Это заметил еще в 1792 году производитель фарфора Томас Веджвуд при разогревании разных материалов. Примерно сто лет спустя немецкий физик Вильгельм Вин (18641928) более точно сформулировал эту идею, и сейчас ее называют законом смещения Вина: длина волны максимума в распределении энергии излучения пропорциональна температуре тела, выраженной в градусах Кельвина.
Если быть точным, то закон смещения Вина выполняется только для идеальных тел, где происходит  излучение и поглощение света. Такие идеализированные тела называют «абсолютно черными», подчеркивая их способность поглощать лучи. Если тело не излучает свет, оно выглядит черным. Отверстие в лабораторной печи является хорошим приближением к абсолютно черному телу, поскольку свет не отражается от отверстия. Таким образом, свет, исходящий из этого отверстия, можно рассматривать как излучение абсолютно черного тела. Звезды также являются довольно хорошими примерами черных тел. Автором этого понятия был Густав Кирхгоф.

]]> Спектральный анализ http://galaktikaru.ru/%d1%81%d0%bf%d0%b5%d0%ba%d1%82%d1%80%d0%b0%d0%bb%d1%8c%d0%bd%d1%8b%d0%b9-%d0%b0%d0%bd%d0%b0%d0%bb%d0%b8%d0%b7/ Thu, 13 Dec 2012 14:08:35 +0000 http://galaktikaru.ru/?p=884 Спектральный анализ — вперед, к физике звезд

Истинное значение открытий Фраунгофера не было оценено еще несколько десятилетий. Наконец примерно в 1860 году Роберт Вильгельм Бунзен (18111899) и Густав Роберт Кирхгоф продемонстрировали важность спектральных линий в химическом анализе. Кирхгоф учился в Кенигсберге и в весьма юном возрасте, в 26 лет, получил должность профессора в университете г. Бреслау (ныне — Вроцлав). Там он познакомился с Бунзеном, и они стали друзьями. Когда Бунзен переехал в Гейдельберг, он смог найти там место и для Кирхгофа. В 1871 году Кирхгоф стал профессором теоретической физики в Берлине. Говорят, что Кирхгоф на своих лекциях скорее усыплял студентов, а не придавал им энтузиазма, но среди его студентов были и Генрих Герц, и Макс Планк, ставшие великими физиками.

Долгое время Кирхгоф в сотрудничестве с Бунзеном проводил свои успешные исследования. Бунзен начал анализ химического состава образцов по цвету, который они придавали бесцветному огню его знаменитой горелки. Кирхгоф решил, что будет лучше использовать спектроскоп для более точного измерения длины волны (цвета). Когда это удалось осуществить, все линии Фраунгофера были отождествлены.
Оказалось, что характерный цвет пламени обусловлен яркими спектральными линиями разной длины волны у разных элементов. Каждый элемент имеет собственный характерный признак в виде спектральных линий, которые появляются, когда образец нагревается до такой температуры, чтобы он превратился в горячий газ. По спектральным линиям можно определить химический состав иссле-дуемого образца. В письме, датированном 1859 годом, Бунзен писал: «Сейчас вместе с Кирхгофом мы проводим исследования, которые не дают нам уснуть. Кирхгоф сделал совершенно неожиданное открытие. Он нашел причину возникновения темных линий в спектре Солнца, и он способен воспроизвести эти линии… в непрерывном спектре пламени на тех же местах, что и линии Фраунгофера, Это открывает путь к определению химического состава Солнца и неподвижных звезд..,».
На самом деле еще в 1849 ГОДУ Жан Фуко (18191868) в Париже обнаружил совпадение между лабораторными спектральными линиями и линиями в спектре Солнца. Но по какимто причинам его открытие оказалось забыто. Ничего не зная о работе Фуко, Бунзен и Кирхгоф повторили и усовершенствовали его опыты.

Кирхгоф обобщил свои результаты в виде так называемых законов Кирхгофа .

 законов Кирхгофа

ность) газы излучают спектр состоящий из ярких линий. Яркие ли
нии с определенными длинами волн называют также эмиссионны
ми линиями.
Как уже говорилось, спектр с эмиссионными линиями возникает от горячего, разреженного газа в пламени бунзеновской горелки, наблюдаемом на темном фоне. Однако если за горелкой поставить источник света и пустить интенсивный луч света сквозь газ этого пламени, то можно предположить, что свет горелки и свет, идущий от источника за горелкой, будут складываться. Если же свет, приходящий изза горелки, имеет непрерывный спектр, то можно ожидать, что яркие линии пламени горелки будут налагаться на непрерывный спектр. Но Кирхгоф этого не увидел. Наоборот, он видел непрерывный спектр с темными линиями на тех местах, где должны были быть эмиссионные линии. И это он зафиксировал в своем третьем законе.

Темные линии называются абсорбционными линиями, или линиями поглощения. В спектре Солнца непрерывное излучение исходит из нижних, относительно горячих (около 5500 °С) и плотных слоев солнечной поверхности. На пути вверх свет проходит через более холодные и разреженные слои солнечной атмосферы, которая и дает темные линии Фраунгофера.
Спектральный анализ позволил исследовать химический состав Солнца и даже звезд. Например, две соседние темные спектральные линии «Э» в солнечном спектре видны как яркие линии в спектре горячего натриевого газа. Из этого Кирхгоф и Бунзен сделали вывод, что на Солнце много газообразного натрия. Кроме того, они нашли в спектре Солнца признаки железа, магния, кальция, хрома, меди, цинка, бария и никеля. К концу столетия были открыты водород, углерод, кремний и неизвестный элемент, который назвали гелием в честь греческого имени Солнца. В1895 году гелий был обнаружен и на Земле. Самый простой спектр из всех элементов оказался у водорода. Его спектральные линии образуют такой простой и стройный ряд, что преподаватель Базельского университета (Швейцария) Иоганн Якоб Бальмер (18251898) придумал простую формулу для определения их длин волн. Эту серию спектральных линий водорода называют бальмеровскими линиями.
Но невозможно определить степень обилия элементов на Солнце только лишь на основе интенсивности спектральных линий каждого элемента. С помощью сложных вычислений, учитывающих температуру, было выяснено, что наиболее обильным элементом на Солнце является водород (хотя его спектральные линии не очень интенсивны), а второе место занимает гелий. На долю всех прочих элементов приходится менее 2% (табл., там указано также обилие наиболее распространенных элементов на Земле и в человеческом теле).


Современный химический анализ показывает, что остальные звезды не сильно отличаются от Солнца. А именно, водород — самый распространенный элемент; его доля составляет примерно 72% массы звезды. Доля гелия около 26%, а на долю остальных элементов остается не более 2%. Однако содержание именно этих тяжелых элементов на поверхности звезд сильно различается от одной звезды к другой.

]]> Природа света http://galaktikaru.ru/%d0%bf%d1%80%d0%b8%d1%80%d0%be%d0%b4%d0%b0-%d1%81%d0%b2%d0%b5%d1%82%d0%b0/ Tue, 11 Dec 2012 13:59:41 +0000 http://galaktikaru.ru/?p=879 Природа света

Что такое свет, этот прекрасный и стремительный переносчик информации, без которого мы не можем изучать ни глубины Вселенной, ни секреты микромира? Ньютон считал, что свет состоит из частиц, в то время как Гюйгенс представлял свет как волны в гипотетической среде — эфире. Томас Юнг разгадал эту загадку раз и навсегда; по крайней мере, так казалось.

Природа света
Юнг начал свою карьеру в медицине, которую он изучал в Лондоне, Эдинбурге и Геттингене; в конце концов ученую степень он получил в Кембриджском университете. Но еще до окончания университета ему досталось наследство от двоюродного деда, и это обеспечило его существование до конца дней. Юнг стал практикующим врачом в Лондоне., но в то же время интересовался всем, что было связано со светом: зрением, происхождением радуги и т. п. Он проводил опыты по разделению луча света на две части, а затем собирал их опять в один луч.

Свет как волновое явление

Что получается, когда сливаются два световых луча? Если свет состоит из частиц, то интенсивность света должна возрастать: свет + свет = больше света. Но если свет имеет волновую природу, то возможен и другой результат: свет + свет = тьма. Представьте себе волны на воде с выступами над поверхностью и впадинами под ней. Волны могут разрушать друг друга, если впадина одной волны попадает на некоторый участок поверхности в тот момент, когда туда же попадает выпуклость другой волны. Юнг наблюдал это явление, называемое интерференцией (рис. 12.2). Ясно, что интерференция указывает на волновую природу явления. Это опыт очень помог Юнгу измерить крошечное расстояние между соседними гребнями волны, то есть длину волны, света. Она заключена в пределах от 0,4 мкм (1 мкм = 0,001 мм) для фиолетового света до 0,7 мкм для красного света.
Если свет — волна, то что же колеблется? В нашем примере поверхность воды колебалась вверх и вниз, перпендикулярно направлению перемещения гребней и впадин, — это поперечная волна. Звуковая волна распространяется в воздухе как волна сжатия, перемещая молекулы тудасюда вдоль направления движения; волна движется как при резком сжатии пружины с одного конца — это продольная волна. Юнг показал, что световые волны являются поперечными, как волны на поверхности воды. К такому же выводу независимо, но немного позже, пришел и Опостен Жан Френель (17881827). Таким образом, свет — как любая поперечная волна — может быть поляризован, что невозможно для волн сжатия. В качестве аргумента против волновой природы света ученые той эпохи указывали, что ничего не известно о той среде, в которой распространяются световые волны и которую Юнг и Френель называли эфиром.
Как заметил Ньютон, когда луч солнечного света, проникнув сквозь дырочку в оконных ставнях, далее проходит через призму, он расщепляется на все цвета радуги, которые создают видимость
непрерывной полосы цветов — солнечного спектра.

Как показано на рисунке, свет данного цвета невозможно еще сильнее расщепить второй призмой. Проделав этот опыт, Ньютон пришел к выводу, что белый свет — это смесь, состоящая из отдельных компонентов, каждый из которых имеет свой цвет.

При расщеплении призмой широкого солнечного луча разные цвета перекрываются, что делает спектр недостаточно четким.

Чтобы избежать взаимного наложения цветов, уже упоминавшийся нами Йозеф Фраунгофер использовал точно изготовленную систему из очень узкой щели, линз и призмы (такой прибор сейчас называют спектроскопом). Изучая солнечный свет, Фраунгофер обнаружил, что в спектре Солнца отсутствуют некоторые цвета! На цветной полосе спектра отсутствующие цвета видны как темные линии — на этом месте, то есть на этой длине волны, в спектре Солнца нет изображения узкой входной щели.
Еще до Фраунгофера, в 1802 году, это явление обнаружил Уильям Воллаетон (17661828). Он наблюдал всего несколько линий и принял их как естественную границу между основными цветами. А Фраунгофер наблюдал и измерил около 6оо темных линий; теперь их так и называют — фраунгоферовы линии. Он заметил также, что в искрах и пламени огня спектр некоторых элементов дает яркие линии, которые появляются на тех же местах, что и определенные темные линии в спектре Солнца. Например, натрий дает яркий желтый цвет на той же длине волны, что и темная фраунгоферова линия «Б».

]]>