Список Видео

Здравый смысл и реальность

Квантовая физика оказалась очень точной в объяснении свойств материи, и в этом смысле она «правильная». Однако концептуальные основы квантовой теории все еще обсуждаются и изучаются. Явления микромира настолько отличаются от тех, к которым мы привыкли в макроскопическом мире, и от «здравого смысла», что нас изумляет то, как более глубокий слой действительности отражен в квантовой физике.Одним из наиболее влиятельных мыслителей в области фи­лософских аспектов квантовой механики был Нильс Бор.

Здравый смысл и реальность

Основой старой физики была свободная частица, движущаяся с постоянной, точно известной скоростью. Но затем принцип нео­пределенности Гейзенберга сообщил нам, что мы ничего не знаем о положении частицы: она везде, и в то же время ее нет нигде во Вселенной! Классическая частица просто не может жить в кванто­вом мире. Равно как и знакомое нам понятие орбиты становится неопределенным.

Рассмотрим электрон, который покинул точку А и позже наблю­дался в точке В Лаплас, защитник механики Ньютона, вычислил бы орбиту между этими двумя точками и мог бы точно сказать вам, где на орбите был электрон в каждое мгновение своего путешествия и с какой скоростью он двигался. Принцип неопреде­ленности не позволяет так подробно описать движение этой ча­стицы. Электрон наблюдался в точках А и В, но мы действительно не знаем, где он был в промежутке. Самое большее, что мы можем сделать, это вычислить вероятности любой траектории электрона между этими двумя точками.

Если у электрона нет определенной орбиты, то откуда он знает, куда двигаться? Можно сказать, что электрон пробует одновремен­но все пути. Каждый путь представлен электронной волной. Когда волны всех путей складываются друг с другом, то в большинстве то­чек они гасятся. Только в некоторых точках они в результате интер­ференции усиливаются, там и возникает высокая вероятность найти электрон. Точка В как раз такая. Но каким же был реальный путь от А до В? Ответ: все пути или ни один из них, как вам больше нравится. Идея орбиты потеряла свой смысл. Когда мы говорим о более мас­сивных телах, то подходим к классической орбите. Для них интер­ференционная картина всех траекторий дает высокую вероятность тонкой линии, соединяющей точки А и В. Поэтому в повседневной жизни мы спокойно можем использовать концепцию Лапласа.

Здравый смысл и реальность

А что случилось со Вселенной Лапласа в виде часового механиз­ма, который, будучи однажды заведенным, работает «как часы»? Принцип неопределенности разрушает этот механизм еще до того, как вы смогли бы запустить его. Предположение Лапласа, что «если бы положения и скорости всех тел были известны в начальный мо­мент времени», не может осуществиться, так как и в положениях, и в скоростях есть неопределенность: даже если бы одно из них мож­но было в какойто момент измерить, второе осталось бы неопреде­ленным. Случайная материализация частицы даже за непроницае­мой стеной, как при туннелировании, делает предсказание будуще­го невозможным.

В это трудно поверить, и для многих физиков «старой гвардии» это было неприемлемо. Даже используя математические методы квантовой физики, они не могли принять концепции, стоящие за этими формулами. В некоторой степени это было похоже на первые годы после Коперника, когда его методы вычислений широко ис­пользовали, а систему мира с Солнцем в центре не признавали.

Возможно, самым сомневающимся в интерпретации квантовой механики был Альберт Эйнштейн, который говорил: «Бог не играет в кости». Для опровержения «неопределенного характера» кван­товой физики он придумал мысленные эксперименты, в которых можно было бы обойти принцип неопределенности. У Бора и других сторонников квантовой философии на эти аргументы всегда имел­ся ответ. Но был один эксперимент, который требовалось провести, чтобы выяснить, кто прав, а кто нет. Этот эксперимент предложили Эйнштейн и его коллеги Борис Подольский и Натан Розен.

  • Похожие статьи из категории: Странности микромира
  • Структура атомов

    Развитие квантовой теории позволило понять структуру атома: почему атомы каждого элемента обладают характерными химиче­скими свойствами, как атомы объединяются в химические соедине­ния и многое другое. Вычисления в квантовой механике основаны на […]

  • Расплывчатые частицы: принцип неопределенности Гейзенберга

    Главная особенность квантовой механики заключена в ее веро­ятностной природе, сформулированной Максом Борном в 1926 году. Вместо того чтобы говорить о точных значениях физических вели­чин, есть возможность описать только распределение вероятности […]

  • Механика атомов

    Новая теория для механики атомных явлений была названа квантовой механикой. Первый шаг к ее открытию сделал немецкий физик Вернер Гейзенберг. Немного позже была разработана кван­товая электродинамика для описания электромагнитных явлений […]

  • Модель Бора и спектроскопические законы Кирхгофа

    Модель атома Бора прекрасно объясняет эксперимен­тальные законы спектроскопии, открытые Кирхгофом. В тонком слое горячего газа атомы сталкиваются друг с дру­гом, забрасывая электроны на высокие орбиты. Вскоре они спрыгивают на орбиты […]

  • Атом Бора

    Датский физик Нильс Бор применил новую квантовую концеп­цию к атому. Бор родился в Копенгагене, в богатой семье. В юности он был известным футболистом: вместе с братом играл в лучших национальных […]